From observations to experiments in phenology research: investigating climate change impacts on trees and shrubs using dormant twigs.

نویسندگان

  • Richard B Primack
  • Julia Laube
  • Amanda S Gallinat
  • Annette Menzel
چکیده

BACKGROUND AND AIMS Climate change is advancing the leaf-out times of many plant species and mostly extending the growing season in temperate ecosystems. Laboratory experiments using twig cuttings from woody plant species present an affordable, easily replicated approach to investigate the relative importance of factors such as winter chilling, photoperiod, spring warming and frost tolerance on the leafing-out times of plant communities. This Viewpoint article demonstrates how the results of these experiments deepen our understanding beyond what is possible via analyses of remote sensing and field observation data, and can be used to improve climate change forecasts of shifts in phenology, ecosystem processes and ecological interactions. SCOPE The twig method involves cutting dormant twigs from trees, shrubs and vines on a single date or at intervals over the course of the winter and early spring, placing them in containers of water in controlled environments, and regularly recording leaf-out, flowering or other phenomena. Prior to or following leaf-out or flowering, twigs may be assigned to treatment groups for experiments involving temperature, photoperiod, frost, humidity and more. Recent studies using these methods have shown that winter chilling requirements and spring warming strongly affect leaf-out and flowering times of temperate trees and shrubs, whereas photoperiod requirements are less important than previously thought for most species. Invasive plant species have weaker winter chilling requirements than native species in temperate ecosystems, and species that leaf-out early in the season have greater frost tolerance than later leafing species. CONCLUSIONS This methodology could be extended to investigate additional drivers of leaf-out phenology, leaf senescence in the autumn, and other phenomena, and could be a useful tool for education and outreach. Additional ecosystems, such as boreal, southern hemisphere and sub-tropical forests, could also be investigated using dormant twigs to determine the drivers of leaf-out times and how these ecosystems will be affected by climate change.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The impacts of climate change and meteorological factors on pollen season indicators of allergenic plant taxa

Pollen respiratory allergies have been increasing in prevalence over the last two decades, partly as the result of the impact of climate change. For many allergenic trees, grass and weed species, increased pollen production and prolonged pollination period result in long-term increased abundance of pollen allergens in the atmosphere; earlier shifts of airborne pollen grains and prolonged exposu...

متن کامل

Investigating the effects of climate change on the pattern of heat accumulation in apple trees cultivation areas in Iran during the future period

Climate change stand as the most important challenge in the future. Horticulture is one of the most sensitive and vulnerable sectors to the climate change. Climate change and global warming will endanger the production of agricultural products and food security. Because of required longer time to fruit production, fruit trees are heavily susceptible to damage from climate change. The purpose of...

متن کامل

Evaluation of the efficiency of APSIM-Wheat model for simulation of phenology and grain yield of bread wheat (Triticum aestivum L.) in drylands of west and northwest of Iran

Crop simulation models are valuable tools for prediction of crop performance under various weather conditions and allow designing methods to limit the negative impacts of adverse environmental constraints. Agricultural Production Systems sIMulator (APSIM) is a comprehensive model that simulates the performance of a wide range of crops in response to climatic, soil and management factors. In thi...

متن کامل

Plant – pollinator interactions and phenological change: what can we learn about climate impacts from experiments and observations?

Climate change can aff ect plant – pollinator interactions in a variety of ways, but much of the research attention has focused on whether independent shifts in phenology will alter temporal overlap between plants and pollinators. Here I review the research on plant – pollinator mismatch, assessing the potential for observational and experimental approaches to address particular aspects of the ...

متن کامل

Model biases in rice phenology under warmer climates

Climate-induced crop yields model projections are constrained by the accuracy of the phenology simulation in crop models. Here, we use phenology observations from 775 trials with 19 rice cultivars in 5 Asian countries to compare the performance of four rice phenology models (growing-degree-day (GDD), exponential, beta and bilinear models) when applied to warmer climates. For a given cultivar, t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Annals of botany

دوره 116 6  شماره 

صفحات  -

تاریخ انتشار 2015